193 research outputs found

    Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking

    Get PDF
    Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish ‘real’ changes in gait performance over time

    An evaluation of symmetries in ground reaction forces during self-paced single- and dual-task treadmill walking in the able-bodied men

    Get PDF
    Gait is a complex autonomous activity that has long been viewed as a symmetrical locomotion, even when it adapts to secondary concurrent attention-demanding tasks. This study aimed to evaluate the symmetry of the three ground reaction forces (GRFs) in able-bodied individuals during self-paced treadmill walking with and without concurrent cognitive demands. Twenty-five male participants (age: 34.00 ± 4.44 years) completed two gait assessment sessions, each of whom were familiarized with the walking trials during their first session. Both sessions involved six-minute self-paced treadmill walking under three conditions: single-task walking and walking while concurrently responding to auditory 1-back and 2-back memory tasks. The symmetry of the GRFs was estimated using a nonlinear approach. Changes in the symmetry and walking speed across conditions in both sessions were assessed using inferential statistics. Results demonstrated that the three GRFs deviated from perfect symmetry by ≥10%. Engaging working memory during walking significantly reduced the symmetry of the vertical GRF (p = 0.003), and its detrimental effects on walking speed were significantly reduced in the second session with respect to the first session (p < 0.05). The findings indicate imperfect gait symmetry in able-bodied individuals, suggesting that common perceptions of gait symmetry should be reconsidered to reflect its objective importance in clinical settings

    Dual-task effects on performance of gait and balance in people with knee pain: a systematic scoping review

    Get PDF
    Dual-task paradigms have been increasingly used to assess the interaction between cognitive demands and the control of balance and gait. The interaction between functional and cognitive demands can alter movement patterns and increase knee instability in individuals with knee conditions, such as knee anterior cruciate ligament (ACL) injury or osteoarthritis (OA). However, there is no consensus on the effects of dual-task on gait mechanics and balance in those individuals. This systematic scoping review aims to examine the impact of dual-task gait and standing balance on motor and cognitive performance in individuals with knee OA or ACL injury. A comprehensive search of MEDLINE, PubMed, Web of Science, and EMBASE electronic databases up until December 2019 was carried out. Inclusion criteria was limited to include dual-task studies that combined cognitive tasks performed simultaneously with gait or standing balance in individuals with knee OA or ACL injuries. In total, fifteen studies met the inclusion criteria, nine articles examined dual-task effects on balance, and six articles reported the effects of dual-task on gait. The total number of individuals included was 230 individuals with ACL injuries, and 168 individuals with knee OA. A decline in gait and balance performance during dual-task testing is present among individuals with ACL injury and/or ACL reconstruction and knee OA. Further research is required, but dual taking assessment could potentially be used to identify individuals at risk of falling or further injury and could be used to develop targeted rehabilitation protocols. A variety of outcome measures have been used across the studies included, making comparisons difficult. The authors, therefore, recommend developing a standardized set of biomechanical balance variables

    The potential of using virtual reality-based self-paced treadmill to assess road-crossing safety and self-evaluation with traumatic brain injuries: a series case study

    Get PDF
    Impaired self-awareness (ISA) is common following traumatic brain injury (TBI) and can significantly impact safe road-crossing. Road-crossing interventions are variable and involve high-risk real-world situations. Virtual reality (VR)-based road-crossing can elicit changes in real-world functioning but has not been trialled in the TBI population. The primary objective of this research was to explore whether VR-based self-paced treadmill technology offers a safe road-crossing assessment mechanism for people with TBI. Three participants with TBI completed two road-crossing pilot-trials using a VR-based self-paced treadmill. Avatar feedback and verbal feedback were provided between trials. Participants were provided with a safe road-crossing strategy for the second pilot-trial. The Researcher and Participant evaluated road-crossing following each trial using the Mayo-Portland Adaptability Inventory and the number of safe road-crossings to assess changes in self-evaluation and performance between trials. One of the participants perceived improvements in self-evaluation and performance in the second pilot-trial. All participants attempted to apply the safe road-crossing strategy advised. No safety issues were identified using the VR-based self-paced treadmill within this study’s protocol thereby supporting the primary objective of the work. Future research is warranted to strengthen the evidence-base for using VR to elicit improvements in ISA in road-crossing and in generalising findings to the wider TBI population

    Effects of self-paced incline treadmill walking on lower limb muscles activation level

    Get PDF
    The aim of this study was to investigate the effects of incline walking on muscle activation level of biceps femoris (BF), soleus (SOL), and tibialis posterior (TP). Subjects included 28 able-bodied volunteers walked at level and inclined self-paced instrumented treadmill. Uphill walking increased the muscle activation level of BF and SOL, while downhill walking increased muscle activation level of TP. Our findings suggest that inclined walking affects lower limb muscle activation level to maintain a comfortable and safe gait in able-bodied individuals

    A survey of the Islamic insurance literature – takaful

    Get PDF

    Gait stability characteristics in able-bodied individuals during self-paced inclined treadmill walking: within-subject repeated-measures study

    Get PDF
    Background: Inclined walking is a challenging task that requires active neuromuscular control to maintain stability. However, the adaptive strategies that preserve stability during inclined walking are not well understood. Investigating the effects of self-paced inclined treadmill walking on gait stability characteristics and the activation patterns of key lower limb muscles can provide insights into these strategies. Objective: The aim of this study was to investigate the effects of self-paced inclined treadmill walking on gait stability characteristics and the activation of key lower limb muscles. Methods: Twenty-eight able-bodied individuals (mean age 25.02, SD 2.06 years) walked on an augmented instrumented treadmill for 3 minutes at 3 inclination angles (−8°, 0°, and 8°) at their preferred walking speed. Changes in gait characteristics (ie, stability, walking speed, spatial-temporal, kinematic, and muscle forces) across inclination angles were assessed using a repeated measures ANOVA and the Friedman test. Results: The study revealed that inclined treadmill walking has a significant impact on gait characteristics (P<.001). Changes were observed in spatial-temporal parameters, joint angles, and muscle activations depending on the treadmill inclination. Specifically, stability and walking speed decreased significantly during uphill walking, indicating that it was the most challenging walking condition. Uphill walking also led to a decrease in spatial parameters by at least 13.53% and a 5.26% to 10.96% increase in temporal parameters. Furthermore, joint kinematics and peak activation of several muscles, including the hamstrings (biceps femoris, long head=109.5%, biceps femoris, short head=53.3%, semimembranosus=98.9%, semitendinosus=90.9%), gastrocnemius (medial gastrocnemius=40.6%, lateral gastrocnemius=35.3%), and vastii muscles (vastus intermedius=12.8%, vastus lateralis=16.7%) increased significantly during uphill walking. In contrast, downhill walking resulted in bilateral reductions in spatial-temporal gait parameters, with knee flexion increasing and hip flexion and ankle dorsiflexion decreasing. The peak activation of antagonist muscles, such as the quadriceps, tibialis anterior, and tibialis posterior, significantly increased during downhill walking (rectus femoris=97.7%, vastus lateralis =70.6%, vastus intermedius=68.7%, tibialis anterior=72%, tibialis posterior=107.1%). Conclusions: Our findings demonstrate that able-bodied individuals adopt specific walking patterns during inclined treadmill walking to maintain a comfortable and safe walking performance. The results suggest that inclined treadmill walking has the potential to serve as a functional assessment and rehabilitation tool for gait stability by targeting muscle training. Future research should investigate the effects of inclined treadmill walking on individuals with gait impairments and the potential benefits of targeted muscle training. A better understanding of the adaptive strategies used during inclined walking may lead to the development of more effective rehabilitation interventions for individuals with lower limb injuries
    • …
    corecore